五月激情开心网,五月天激情社区,国产a级域名,婷婷激情综合,深爱五月激情网,第四色网址

燃料電池技術論文優選九篇

時間:2023-03-13 11:25:57

引言:易發表網憑借豐富的文秘實踐,為您精心挑選了九篇燃料電池技術論文范例。如需獲取更多原創內容,可隨時聯系我們的客服老師。

燃料電池技術論文

第1篇

燃料電池是一種不經過燃燒而以電化學反應方式將燃料的化學能直接變為電能的發電裝置,可以用天然氣、石油液化氣、煤氣等作為燃料。也是煤炭潔凈轉化技術之一。按電解質種類可分為堿性燃料電池(AFC)、磷酸型燃料電池(PAFC)、熔融碳酸鹽燃料電池(MCFC)、固體氧化物燃料電池(SOFC)、質子交換膜燃料電池(PEMFC)、再生氫氧燃料電池(RFC)、直接醇類燃料電池(DMFC),還有如新型儲能電池、固體聚合物型電池等。

氫和氧氣是燃料電池常用的燃料氣和氧化劑。此外,CO等一些氣體也可作為MCFC與SOFC的燃料。從長遠發展看,高溫型MCFC和SOFC系統是利用煤炭資源進行高效、清潔發電的有效途徑。我國豐富的煤炭資源是燃料電池所需燃料的巨大來源。

燃料電池具有高效率、無污染、建設周期短、易維護以及成本低的誘人特點,它不僅是汽車最有前途的替代清潔能源,還能廣泛用于航天飛機、潛艇、水下機器人、通訊系統、中小規模電站、家用電源,又非常適合提供移動、分散電源和接近終端用戶的電力供給,還能解決電網調峰問題。隨著燃料電池的商業化推廣,市場前景十分廣闊。人們預測,燃料電池將成為繼火電、水電、核電后的第四電方式[1],它將引發21世紀新能源與環保的綠色革命。

1,中國燃料電池技術的進展

“燃料電池技術”是我國“九五”期間的重大發展項目,目標是,利用我國的資源優勢,從高起點做起,加強創新;在“九五”期間,使我國燃料電池的技術發展接近國際水平。內容包括“質子交換膜燃料電池技術”、“熔融碳酸鹽燃料電池技術”及“固體氧化物燃料電池技術”三大項目[2],其中,用于電動汽車的“5kW質子交換膜燃料電池”列為開發的重點。此項任務由中國科學院及部門所屬若干研究所承擔。所定目標業已全部實現。

在質子交換膜燃料電池(PEMFC)方面,我國研究開發的這類電池已經達到可以裝車的技術水平,可以與世界發達國家競爭,而且在市場份額上,可以并且有能力占有一定比例[1]。我國自把質子交換膜燃料電池列為"九五"科技攻關計劃的重點項目以后,以大連化學物理研究所為牽頭單位,在全國范圍內全面開展了質子交換膜燃料電池的電池材料與電池系統的研究,取得了很大進展,相繼組裝了多臺百瓦、1kW-2kW、5kW、10kW至30kW電池組與電池系統。5kW電池組包括內增濕部分,其重量比功率為100W/kg,體積比功率為300W/L。質子交換膜燃料電池自行車已研制成功,現已開發出200瓦電動自行車用燃料電池系統。百瓦級移動動力源和5kW移動通訊機站動力源也已開發成功。千瓦級電池系統作為動力源,已成功地進行了應用試驗。由6臺5kW電池組構成的30kW電池系統已成功地用作中國首臺燃料電池輕型客車動力源。裝車電池最大輸出功率達46千瓦。目前該車最高時速達60.6km/h,為燃料電池電動汽車以及混合動力電動汽車的發展打下良好的基礎。該電池堆整體性能相當于奔馳、福特與加拿大巴拉德公司聯合開發的MK7質子交換膜燃料電池電動車的水平[3]。我國目前正在進行大功率質子交換膜燃料電池組的開發和燃料電池發動機系統集成的研究。

在熔融碳酸鹽燃料電池(MCFC)方面,我國已經研制出α和γ型偏鋁酸鋰粗、細粉料,制備出大面積(大于0.2m2)的電池隔膜,預測隔膜壽命超過3萬小時。在進行材料部件研究的基礎上,成功組裝和運行了千瓦級電池組。

在固體氧化物燃料電池(SOFC)技術方面,已經制備出厚度為5-10μm的負載型致密YSZ電解質薄膜,研制出一種能用作中溫SOFC連接體的Ni基不銹鋼材料。負載型YSZ薄膜基中溫SOFC單體電池的最大輸出功率密度達到0.4W/cm2,負載型LSGM薄膜基中溫SOFC單體電池的最大輸出功率密度達到0.8W/cm2。這些技術創新為研制千瓦級、十千瓦級中溫固體氧化物燃料電池發電技術的研發奠定了堅實基礎。

2,國外燃料電池技術發展迅猛

燃料電池是新世紀最有前途的清潔能源,是替代傳統能源的最佳選擇。因此,燃料電池技術的研究開發受到許多國家的政府和跨國大公司的極大重視。美國將燃料電池技術列為涉及國家安全的技術之一,《時代》周刊將燃料電池電動汽車列為21世紀10大高技術之首;日本政府認為燃料電池技術是21世紀能源環境領域的核心;加拿大計劃將燃料電池發展成國家的支柱產業。近十年來,國外政府和企業在燃料電池方面的投資額超過100億美元。為開發燃料電池,戴姆勒-克萊斯勒公司一家近年來每年就投入10億美元,豐田公司的年投資額超過50億日元[4]。

歐、美發達國家和日本等國政府和企業界都將大型燃料電池的開發作為重點研究項目,并且已取得了許多重要成果,PEMFC技術已發展到實用階段,使得燃料電池即將取代傳統發電機及內燃機而廣泛應用于發電及汽車上。2MW、4.5MW、11MW成套燃料電池發電設備已進入商業化生產,用于國防、航天、汽車、醫院、工廠、居民區等方面;各等級的燃料電池發電廠相繼在一些發達國家建成,其中,國際燃料電池產業巨頭加拿大巴拉德公司籌資3.2億美元,建成的燃料電池廠已于2001年2月正式投產。美國和歐洲將成批生產低成本的家用供電-供暖燃料電池作為最近的開發計劃。目前,在北美、日本和歐洲,燃料電池發電正快速進入工業化規模應用的階段。

目前,車用氫燃料電池已成為世界各大汽車公司技術開發的重中之重。迄今為止,世界6大汽車公司在開發氫燃料電池車上的開發費用已超過100億美元,并以每年10億美元的速度遞增[5]。1997年至2001年,各大公司研制出的車用燃料電池就達41種。

3,我國開發燃料電池技術相對乏力

我國研究燃料電池有過起落。在20世紀60年代曾開展過多種燃料電池的實驗室研究,70年入大量人力物力開展用于空間技術的燃料電池研究,其后研究工作長期停頓。最近幾年,我國才開始重新重視燃料電池技術的研究開發,并取得很大進展。特別在PEMFC方面,達到或接近了世界水平。但是,在總體上,我國燃料電池的研究開發剛剛起步,仍處于科研階段,與國外相比,我國的燃料電池研究水平還較低,我國對燃料電池的組織開發力度還遠遠不夠。作為世界上最大的煤炭生產國和消費國,開發以煤作為一次能源的高溫型MCFC和SOFC具有特別重要的意義。但是我國在MCFC、SOFC研究方面與國外的差距很大,要實現實用化、商業化應用還有很長的路要走。迄今為止,我國還沒有燃料電池發電站的應用實例。這和我國這樣一個大國的地位很不相稱。盡管國家也將燃料電池技術列為"九五"攻關項目,國家和企業投入的資金卻極為有限,年度經費僅為千萬元量級人民幣,與發達國家數億美元的投入相比顯得微不足道;承擔研究任務的也只是中科院等少數科研院所,且研究力量分散,缺少企業的介入,難以取得突破性進展,尤其是難以將取得的研究成果進行實際應用試驗,以形成產業化趨勢。從表1所列國外燃料電池的研究和開況看,歐、美國家和日本等大多是以公司企業為主在從事燃料電池的研究開發和制造生產,而且規模很大,例如,僅加拿大的Ballard一家公司的資產就達10億美元。

4,大力發展燃料電池技術勢在必行

從世界燃料電池迅猛發展的勢頭看,本世紀頭十年將是燃料電池發電技術商品化、產業化的重要階段,其技術實用性、生產成本等都將取得重大突破。預計燃料電池系統將在潔凈煤燃料電池電站、電動汽車、移動電源、不間斷電源、潛艇及空間電源等方面有著廣泛的應用前景,潛在市場十分巨大。可以預料,分散電源供電系統——燃料電池發電廠必將在21世紀內取代以“大機組、大電網、高電壓”為主要特征的現代電力系統,成為電力行業的主力軍。而燃料電池的普遍推廣應用,必將在能源及相關領域引發一場深刻的革命,促進新興產業的形成,帶動國民經濟高速發展。能源領域的這場革命是我國政府、企業、科研院所、高等院校不得不正視的課題,我們對此必須有充分認識并給予足夠的重視。我們應該準確把握這場革命所帶給我們的機遇,毫不遲疑地投入足夠的人力、物力、財力,推動燃料電池發電技術的研究開發和應用工作,使之早日實用化產業化,為我國的國家能源安全和國民經濟可持續發展服務。

國家計委在1997年提出的中國潔凈煤技術到2010年的發展綱要中,已把燃料電池列為煤炭工業潔凈煤的14項技術重點發展目標之一[6]。在“十五”科技發展規劃中,燃料電池技術被列為重點實施的重大項目[7]。

第2篇

關鍵詞:質子交換膜燃料電池;雙極板;電極;催化劑

1質子交換膜燃料電池的結構及原理

按照電解質的不同可將燃料電池分為磷酸燃料電池、堿性燃料電池、固體氧化物燃料電池、熔融碳酸鹽燃料電池及質子交換膜燃料電池(PEMFC)等五類。PEMFC單電池由質子交換膜、氣體擴散電極、雙極板等構成,圖1是其結構與工作原理示意圖。

PEMFC的基本工作過程如下:

(1)氫氣通過雙極板上的導氣通道到達電池的陽極,氫分子在催化劑的作用下解離形成氫離子和電子;

(2)氫離子以水合質子H+(xH2O)的形式通過電解質膜到達陰極,電子在陽極側積累;

(3)氧氣通過雙極板到達陰極后,氧分子在催化劑的作用下變成氧離子,陰、陽極間形成一個電勢差;

(4)陽極和陰極通過外電路連接起來,在陽極積聚的電子就會通過外電路到達陰極,形成電流,對負載做功。同時,在陰極側反應生成水;

(5)只要持續不斷地提供反應氣體,PEMFC就可以連續工作,對外提供電能。

2質子交換膜燃料電池的特點

(1)高效率。PEMFC以電化學方式進行能量轉換,不存在燃燒過程,不受卡諾循環限制,其理論熱效率可達85-90%,目前的實際效率大約是內燃機的兩倍。傳統動力源為了提高效率必須將負荷限制在很小范圍內,而PEMFC幾乎在全部負荷范圍內均有很高效率。

(2)模塊化。PEMFC在結構上具有模塊化的特點,可根據不同動力需求組合安裝,采用“搭積木”式的設計方法簡化了不同規模電堆的設計制造過程。

(3)高可靠性。由于PEMFC電堆采用模塊化的設計方法,結構簡單,易于維護。一旦某個單電池發生故障,可自動采取適當屏蔽措施,只會使系統輸出功率略有下降,而不會導致整個動力系統的癱瘓。

(4)燃料多樣性。PEMFC動力系統既可以純氫為燃料,也可以重整氣為燃料。氫氣的來源可以是電解水的產物,也可以是對汽油、柴油、二甲醚等化石類燃料重整的產物。氫氣的存儲方式可以是高壓氣罐、液氫、金屬氫化物等。

(5)環境友好。當采用純氫為燃料時,PEMFC的唯一產物是水,可以做到零排放。以重整氣為燃料時,相對于內燃機而言,排放也極大降低。此外,PEMFC噪聲水平也很低,各結構部件均可回收利用。3研究現狀

3.1關鍵部件

電解質膜、雙極板、催化劑及氣體擴散電極是質子交換膜燃料電池的四大關鍵部件。

電解質膜是PEMFC的核心部件,它直接影響燃料電池的性能與壽命。1962年美國杜邦公司研制成功全氟磺酸型質子交換膜,1966年開始用于燃料電池,其商業型號為Nafion,至今仍廣泛使用。但由于Nafion膜成本較高,各國科學家正在研究部分氟化或非氟質子交換膜。

雙極板在PEMFC中起著支撐、集流、分割氧化劑與還原劑并引導氣體在電池內電極表面流動的作用,目前廣泛采用的是以石墨為材料,在其上加工出引導氣體流動的流場,基本流場形式有蛇形、平行、交指及網格狀等。

鉑基催化劑是目前性能最好的電極催化劑,為提高利用率,鉑以納米級顆粒形式高分散地擔載到導電、抗腐蝕的擔體上,目前廣泛采用的擔體為乙炔炭黑,比表面積約為250m2/g,平均粒徑為30nm。

PEMFC的氣體擴散電極由兩層構成,一層為起支撐作用的擴散層,另一層為電化學反應進行的場所催化層。擴散層一般選用炭材如石墨化炭紙或炭布制備,應具備高孔隙率和適宜的孔分布,不產生腐蝕或降解。根據制備工藝和厚度不同,催化層分為厚層憎水、薄層親水及超薄三種類型。

3.2測控系統

PEMFC的工作性能受多種因素(溫度、壓力等)的影響,為確保PEMFC正常運行,提高其可靠性和有效性,就必須監測各個影響因素。即運用有效的措施來連續監測PEMFC運行的關鍵或重要狀態,并對收集到的信息進行必要的分析和處理,以便做到故障預測和及時診斷,為PEMFC管理系統提供依據。目前,進行PEMFC測試系統相關方面研究的公司和機構眾多,但仍沒有制定出有關PEMFC測試的國際標準和相應的標準測試設備,不過已有實用的測試系統投入使用。加拿大Hydrogenics公司的燃料電池測試站(FCATS)、美國Arbin公司的集成燃料電池測試系統(FCTS)是其中的突出代表。

4質子交換膜燃料電池的應用

質子交換膜燃料電池是目前各種燃料電池中實用程度較高的一類。其優越性不僅限于能量轉換效率高、工作溫度低,還體現在其可在較大的電流密度下工作,適宜于較頻繁啟動的場合。因此世界各大汽車生產廠商一致看好其在汽車工業中的應用前景,PEMFC已成為現今燃料電池汽車動力的主要發展方向。目前,通用、豐田等世界上知名的汽車公司,都在積極開發以PEMFC系統為動力源的PEMFC電動車,曾先后推出各種類型的樣車,并進行PEMFC電動車隊的示范運行。PEMFC電動車以其優異的性能和環境污染很少等突出特點引起了人們的普遍關注,甚至被認為將是21世紀內燃機汽車最為有力的競爭者。

此外,在航空航天特別是無人飛行器領域,以及家庭電源、分散電站、移動電子設備電源、水下機器人及潛艇不依賴空氣推進電源等方面也有廣泛應用前景。

5質子交換膜燃料電池的發展趨勢

在關鍵部件方面,圍繞電解質膜、催化劑及雙極板的研究方興未艾。全氟型磺酸膜價格昂貴,開發非全氟的廉價質子交換膜是今后的研究方向。近年來,新型質子交換膜的的研究熱點是開發能夠在100℃以上使用的高溫電解質膜。在催化劑方面,研制高性能抗CO中毒電極催化劑是最緊迫的任務,此外,還要尋找非貴金屬氮化物或碳化物作為現有鉑催化劑的替代。目前廣泛使用的石墨板具有較好的耐腐蝕能力和較高的熱導率,但成本較高,加工難度大,強度、電導率和可回收性均不如金屬板。金屬板目前急需解決的問題是表面處理,以提高其耐腐蝕能力。復合材料雙極板則結合了純石墨板和金屬板的優點,具有耐腐蝕、體積小、質量輕、強度大及工藝性良好等特點,是未來發展的趨勢。

在電堆方面,今后的研究重點將是使電堆中的電池單元的性能接近于單電池的性能,這就需要對電堆的結構進行優化,保證電堆中每一片電池單元的整個活性面積處于一致的操作環境,并優化水、熱管理,改善電流密度分布的均勻性。

參考文獻

第3篇

Fuel Cell Micro-grids

2009

Hardback

ISBN 9781848003378

Shin’ya Obara著

燃料電池技術作為一種新型發電技術引起了越來越多人的關注,技術水平也得到了很大發展,本書介紹了由燃料電池及其它發電裝置構成的分布式發電機組所組成的微電網的相關技術,作者Shin’ya Obara為日本苫小牧國家科技學院的教授,JSME,ASME,IEEE等多個學會成員,是《The Open Fuels and Energy Science Journal》,《Journal of Computational Science and Technology》,《International Conference on Electric Power and Energy Conversion Systems》,《Applied Mathematical Modeling》等多個雜志審稿人,出版著作17本,發表科技論文100多篇。

本書分為13章。1.考慮部分負荷及負荷波動的小型燃料電池熱電聯供系統,介紹了系統的組成與布置、能量平衡與目標函數、能量輸出特性等內容;2.燃料電池供能網絡最小成本優化配置方案,介紹了系統方案、熱水管路系統釋放熱能的數量、能量平衡、成本計算與目標函數、分析方法與案例研究、分析結果等內容;3.分區協作管理模式引起的發電效率的提高,介紹了系統布置、微電網的發電效率、電力需求模型、分析方法并進行了案例研究,對分析結果進行了討論;4.采用負荷平衡及放熱損失方法考慮減小燃料電池容量的燃料電池供電系統,介紹了負荷平衡和燃料電池的布置方案、分析方法并進行了案例分析;5.柴油發電裝置與燃料電池混合互聯微電網的設備布置方案,介紹了微電網模型、混合互聯微電網模型、設備布置、混合互聯微電網運行方法、柴油發電機特性與質子交換膜型燃料電池特性、系統分析方法并進行了案例研究;6.分布式燃料電池廢熱的有效利用分析法,介紹了熱水管路放熱的途徑與數量、熱能平、熱水管路系統放熱的數量、燃料電池發電與供熱特性、能量需求方式與燃料電池容量,并進行了案例分析,對分析結果進行了研究;7.寒冷地區獨立房間燃料電池的負荷相應特性,介紹了系統布置、每部分裝置的時間常數、分析方法、分析結果與討論;8.可以控制裝置數量的燃料電池微電網的負荷響應特性,介紹了微電網的電能質量、系統中各配置裝置的響應特性、控制變量與分析方法、微電網的負荷響應特性;9.質子交換膜燃料電池與木質生物質發電機混合微電網動態特性,介紹了系統方案、質子交換膜燃料電池與斯特林發電機的控制響應特性、該混合微電網動態特性分析結果;10.考慮到部分負荷運行時效率TIGA的燃料電池與氫發動機混合系統,介紹了系統方案、設備特性,該混合系統的電力與熱能輸出特性,案例分析與結果討論;11.氫氣化城市煤氣發動機與燃料電池混合微電網二氧化碳排放分析,介紹了系統方案、設備特性、案例分析與結果討論;12.帶太陽能重整裝置的燃料電池系統的快速運算法則的發展,介紹了系統方案、能量與質量平衡、該系統的動態運行預測、案例分析與結果討論;13.燃料電池與風力發電機微電網的功率特性,介紹了微電網模型,系統布置設備的響應特性,控制參數與分析方法,微電網的負荷響應特性。

本書結構清晰,表述深入淺出,理論分析之后都有相應的案例分析,有利于對所述內容的理解。該書既可以作為電力相關專業本科生或研究生的教科書,也可以作為相關領域研究人員的參考資料。

論立勇,博士生

(中國科學院理化技術研究所)

第4篇

【論文摘要】:電能高效潔凈地生產、傳輸、儲存、分配和使用的技術將成為電力技術的重點領域。

“電力技術是通向可持續發展的橋梁”,這個論斷已經逐漸成為人們的共識。研究表明,為了實現可持續發展,應盡可能把一次能源轉換為電能使用,提高電力在終端能源中的比例。因為,在保證相同的能源服務水平的前提下,使用電力這種優質能源最清潔、方便,易于控制、效率最高。如果能將大量分散燃用的化石燃料都高效潔凈地轉換為電力使用,人們賴以生存的環境和生活質量就會大大改善。因此,電能高效潔凈地生產、傳輸、儲存、分配和使用的技術將成為電力技術的重點領域。以下將對若干電力前沿技術的現狀和未來發展前景進行簡單評述。

1.分布式電源

當今的分布式電源主要是指用液體或氣體燃料的內燃機(IC)、微型燃氣輪機(Microtur_bines)和各種工程用的燃料電池(FuelCell)。因其具有良好的環保性能,分布式電源與“小機組”已不是同一概念。

1.1微型燃氣輪機

微型燃氣輪機(MicroTurbine),是功率為幾千瓦至幾十千瓦,轉速為96000r/min,以天然氣、甲烷、汽油、柴油為燃料的超小型燃氣輪機,工作溫度500℃,其發電效率可達30%。目前國外已進入示范階段。其技術關鍵是高速軸承、高溫材料、部件加工等。可見,電工技術的突破常常取決于材料科學的進步。

1.2燃料電池

燃料電池是直接把燃料的化學能轉換為電能的裝置。它是一種很有發展前途的潔凈和高效的發電方式,被稱為21世紀的分布式電源。

1.2.1燃料電池的工作原理

燃料電池的工作原理頗似電解水的逆過程。氫基燃料送入燃料電池的陽極(電源的負極)轉變為氫離子,空氣中的氧氣送入燃料電池的陰極(電源的正極),負氧離子通過2極間離子導電的電解質到達陽極與氫離子結合成水,外電路則形成電流。

通常,完整的燃料電池發電系統由電池堆、燃料供給系統、空氣供給系統、冷卻系統、電力電子換流器、保護與控制及儀表系統組成。其中,電池堆是核心。低溫燃料電池還應配備燃料改質器(又稱為燃料重整器)。高溫燃料電池具有內重整功能,無須配備重整器。磷酸型燃料電池(PAFC)是目前技術成熟、已商業化的燃料電池。現在已能生產大容量加壓型11MW的設備及便攜式250kW等各種設備。第2代燃料電池的溶融碳酸鹽電池(MCFC),工作在高溫(600~700℃)下,重整反應可以在內部進行,可用于規模發電,現在正在進行兆瓦級的驗證試驗。固體電解質燃料電池(SOFC)被稱為第3代燃料電池。由于電解質是氧化鋯等固體電解質,未來可用于煤基燃料發電。質子交換膜燃料電池是最有希望的電動車電源。

1.2.2性能和特點

燃料電池有以下優點:(1)有很高的效率,以氫為燃料的燃料電池,理論發電效率可達100%。熔融碳酸鹽燃料電池,實際效率可達58.4%。通過熱電聯產或聯合循環綜合利用熱能,燃料電池的綜合熱效率可望達到80%以上。燃料電池發電效率與規模基本無關,小型設備也能得到高效率。(2)處于熱備用狀態,燃料電池跟隨負荷變化的能力非常強,可以在1s內跟隨50%的負荷變化。(3)噪音低;可以實現實際上的零排放;省水。(4)安裝周期短,安裝位置靈活,可省去新建輸配電系統。

目前燃料電池大規模應用的障礙是造價高,在經濟性上要與常規發電方式競爭尚需時日。

1.2.3技術關鍵和研究課題

燃料電池的技術關鍵涉及電池性能、壽命、大型化、價格等與商業化有關的項目,主要涉及新的電解質材料和催化劑。熔融碳酸鹽電池(MCFC)在高溫條件下液體電解質的損失和腐蝕滲漏降低了電池的壽命,使MCFC的大型化及實用化受到限制。需要解決電池構成材料的腐蝕;電極細孔構造變化使電池性能下降等問題。固體氧化物燃料電池(SOFC)使用固體電解質且工作溫度很高,對構成材料及其加工有特殊要求。為了得到高溫下化學性穩定和致密性(不通過氣體)的電解質,在氧化鋯中加入Y2O3生成釔穩定氧化鋯。為了降低工作溫度,應盡可能減少電解質薄膜厚度。通常采用熔射法、燒結法和電化學蒸發涂層法制備電解質薄膜。實用的電解質膜的厚度為0.03~0.05mm。比較先進的已達到0.01mm。這樣薄的電解質陶瓷材料除應當有足夠的機械強度外,必須具有高度的氣體致密性,否則將喪失燃料電池的性能。燃料極使用鎳鋯等耐熱金屬陶瓷,鎳還用作燃料重整的催化劑,空氣極在運行中處在高溫氧化中,難以使用一般金屬。鉑的穩定性好,但費用昂貴,需要尋找替代材料,可用電子導電陶瓷。為了降低工作溫度,另外一個重要的研究方向是尋找低溫的質子導電的電解質。工作溫度倘若能降低到700℃以下,SOFC的造價就可以大幅度降低。

2.大功率電力電子技術的應用硅片引起的“第

2.1大功率電力電子器件的重大進展

電力電子學(PowerElectronics)的應用已經有多年的歷史。電力電子學器件用于電力拖動、變頻調速、大功率換流已經是比較成熟的技術。大功率電子器件(HighPowerElectronics)的快速發展也引起了電力系統的重大變革,通常稱為硅片引起的第。

近年來,大功率電子器件已經廣泛應用于電力的一次系統。可控硅(晶閘管)用于高壓直流輸電已經有很長的歷史。大功率電子器件應用于靈活的交流輸電(FACTS)、定質電力技術(CustomPower)以及新一代直流輸電技術則是近10年的事。新的大功率電力電子器件的研究開發和應用,將成為電力研究前沿。

2.2靈活交流輸電技術(FACTS)

靈活交流輸電技術是指電力電子技術與現代控制技術結合以實現對電力系統電壓、參數(如線路阻抗)、相位角、功率潮流的連續調節控制,從而大幅度提高輸電線路輸送能力和提高電力系統穩定水平,降低輸電損耗。超級秘書網

傳統的調節電力潮流的措施,如機械控制的移相器、帶負荷調變壓器抽頭、開關投切電容和電感、固定串聯補償裝置等,只能實現部分穩態潮流的調節功能,而且,由于機械開關動作時間長、響應慢,無法適應在暫態過程中快速靈活連續調節電力潮流、阻尼系統振蕩的要求。因此,電網發展的需求促進了靈活交流輸電這項新技術的發展和應用。

第5篇

【關鍵詞】燃料電池;原理;分類;應用

0.引言

時至今日,世界經濟大體上仍然是化石燃料依賴型的,石油、煤和天然氣占世界初級能源消費總量的85%左右,剩下的部分主要是水電和核電,真正的可再生清潔能源如風能、太陽能等所占比例不到3%。世界能源需求仍在以1.5%~2%的年率增長,而地質學家預測說,石油和天然氣價格將大幅度上升,再也不會回落。

燃料電池的出現與發展,給便攜式電子設備帶來一場深刻的革命,并且還會波及到汽車業,住宅,以及社會各方面的集中供電系統。在21世紀中它將會把人類由集中供電帶進一種分散供電的新時代。燃料電池供電,沒有二氧化碳的排放,可減輕溫室效應使全球氣候變暖問題,它解決了火力發電使全球環境污染的問題,它是一個純正的綠色清潔能源。

1.燃料電池的原理

1.1 燃料電池的組成和工作原理

燃料電池的基本組成:陽極、陰極、電解質和外電路。燃料電池中的電解質有不同的種類。燃料電池是靠氫氧結合成水的反應來發電的,因而不會產生氮氧化物(NOX)和碳氫化合物(HC)等易對空氣造成污染的物質。它由三部分組成:陰極、陽極和電解液。

燃料電池有著幾個獨特的性質:

(1)燃料電池在工作時必須有能量(燃料)輸入,才能產出電能。

(2)燃料電池所能夠產生的電能只和燃料的供應有關,只要供給燃料就可以產生電能,其放電是連續進行的。

(3)燃料電池本體的質量和體積并不大,但需要一套燃料儲存裝置或燃料轉換裝置和附屬設備才能獲得氫氣,而這些燃料儲存裝置或燃料轉換裝置和附屬設備的質量和體積遠遠超過燃料電池本身。

1.2 燃料電池中的催化作用

燃料電池中的電催化作用是用來加速燃料電池化學反應中電荷轉移的一種作用,一般發生在電極與電解質的分界面上。 催化劑是一類可產生電催化作用的物質。電催化劑可以分別用于催化陽極和陰極反應。這種分離的催化特征,使得人們可以更好地優選不同的催化劑。

評價催化劑的主要技術指標為穩定性、電催化活性、電導率和經濟性。

2.燃料電池的特點

由于燃料電池能將燃料的化學能直接轉化為電能,因此,它沒有像通常的火力發電機那樣通過鍋爐、汽輪機、發電機的能量形態變化,可以避免中間的轉換的損失,達到很高的發電效率。同時還有以下一些特點:

不管是滿負荷還是部分負荷均能保持高發電效率;不管裝置規模大小均能保持高發電效率; 具有很強的過負載能力; 通過與燃料供給裝置組合的可以適用的燃料廣泛;用天然氣和煤氣等為燃料時,NOX及SOX等排出量少,環境相容性優。

此外,燃料電池的能量轉換效率高,不受卡諾效率限制;清潔、環保。燃料電池不需要鍋爐、汽輪機等大型設備、沒有SOx、NOx氣體和固體粉塵的排放;可靠性和操作性良好,噪聲低;所用燃料廣泛,占地面積小,建廠具有很大靈活性。

3.燃料電池的分類

燃料電池可依據其工作溫度、所用燃料的種類和電解質類型進行分類。按照工作溫度,燃料電池可分為高、中、低溫型三類。按燃料來源,燃料電池可分為直接式燃料電池(如直接甲醇燃料電池),間接式燃料電池(如甲醇通過重整器產生氫氣,然后以氫氣為燃料電池的燃料)和再生類型進行分類。依據電解質的不同,可將燃料電池分為堿性燃料電池(AFC)、直接甲醇燃料電池(DMFC)、熔融碳酸鹽燃料電池(MC

FC)、固體氧化物燃料電池(SOFC)及質子交換膜燃料電池(PEMFC)等。

3.1直接甲醇燃料電池

直接甲醇燃料電池是以甲醇為燃料,通過與氧結合產生電流的,優點是直接使用甲醇,省去了氫的生產與存儲。其電化學轉化過程又可分為兩種方式,一種是直接燃料電池,另一種是間接燃料電池。直接燃料電池主要是甲醇在陽極被電解為氫和二氧化碳,氫通過質子膜到陰極與氧氣反應并同時產生電流。間接燃料電池是先將甲醇進行煉解或重整得到氫,然后再由氫和氧通過質子膜電解槽反應而獲得供給汽車動力的電能。這種燃料電池以甲醇為能量來源,手機,筆記本電腦將不再用充電。

3.2固體氧化物燃料電池

固體氧化物燃料電池采用固體氧化物作為電解質,除了高效,環境友好的特點外,它無材料腐蝕和電解液腐蝕等問題;在高的工作溫度下電池排出的高質量余熱可以充分利用,使其綜合效率可由50%提高到70%以上; 它的燃料適用范圍廣,不僅能用H2,還可直接用CO、天然氣(甲烷)、煤汽化氣,碳氫化合物、NH3、H2S等作燃料。這類電池最適合于分散和集中發電。

3.3堿性燃料電池

再生氫氧燃料電池將水電解技術(電能+2H2O2H2+O2)與氫氧燃料電池技術(2H2+O2H2O+電能)相結合 ,氫氧燃料電池的燃料 H2、氧化劑O2可通過水電解過程得以“再生”, 起到蓄能作用。可以用作空間站電源。采用氫氧化鉀溶液作為電解液。這種電解液效率很高(可達60-90%),但對影響純度的雜質,如二氧化碳很敏感。因而運行中需采用純態氫氣和氧氣。這一點限制了將其應用于宇宙飛行及國際工程等領域。

3.4質子交換膜燃料電池

燃料電池工程中心研究雙效催化劑和雙效氧電極的制備方法,研制薄層電極并制備膜電極三合一組件,降低電極鉑擔量。目前電極的鉑擔量已降至0.02mg/cm2。同時進行固體電解質的水電解技術開發,已掌握水電解用膜電極的制備技術。

3.5熔融碳酸鹽燃料電池

熔融碳酸鹽燃料電池是一種高溫電池(600~700℃),具有效率高(高于40%)、噪音低、無污染、燃料多樣化(氫氣、煤氣、天然氣和生物燃料等)、余熱利用價值高和電池構造材料價廉等諸多優點,是下一世紀的綠色電站。

4.燃料電池的應用

燃料電池技術因具備低污染、高能源轉換效率的特性,更能滿足人類高效、環保的需求。它具有更高的能源密度。緊急備用發電機、住宅用熱電共生系統、UPS、分布式發電系統、軍事國防、太空與運輸工具領域、機器人、筆記型計算機、PDA、手機等便攜電子產品、便攜電源、搬運工具、電動輔助/代步車等。采用極薄的塑料薄膜作為其電解質。這種電解質具有高功率一重量比和低工作溫度。是適用于固定和移動裝置的理想材料。

質子交換膜燃料電池以磺酸型質子交換膜為固體電解質,無電解質腐蝕問題,能量轉換效率高,無污染,可室溫快速啟動。質子交換膜燃料電池在固定電站、電動車、軍用特種電源、可移動電源等方面都有廣闊的應用前景,尤其是電動車的最佳驅動電源。它已成功地用于載人的公共汽車和奔馳轎車上。

5.小結

高效、潔凈的燃料電池必將在未來的高效、清潔發電技術中占有一席之地。但是,資金、技術、觀念、基礎設施上還有許多需要克服的困難。油價飆升、電價太貴,燃料電池成為未來家庭能源供應相對便宜的選擇,也是目前最令人滿意的解決方案。在固定電站、電動車、軍用特種電源、可移動電源等方面都有廣闊的應用前景。 [科]

【參考文獻】

[1]石新軍.燃料電池的應用和發展.現代物理知識,2006,1.

第6篇

關鍵詞:電動汽車;雙向DC-DC變換器;動力驅動系統

DOI:10.16640/ki.37-1222/t.2017.09.180

1 課題背景和意義

當前技術條件下,電動汽車使用的大功率直流變換器大都有功率損耗大,能量轉換率低等缺陷。且很多設計方案大都忽略燃料電池等電源軟輸出的特性。因此,設計出符合其特性條件的大功率直流變換器,不僅可以使燃料電池的輸出特性得到改善,還可以使燃料電池得到很好的保護,延長其使用壽命。

雙向DC-DC變換器是電動汽車動力驅動系統的核心組成部件,也是構成能量雙向流動、有效管理能量以及提高動力性能的關節所在。

2 電動汽車雙向直流傳動系統

2.1 雙向DC-DC變換器的控制方式

電動汽車的電機是經典的有源型負載,因為有較寬的轉速調節范圍,在行車時又要經常的進行加減速,而且在其工作中,蓄電池電壓的變化范圍非常大。若想在一定負載范圍內使蓄電池組的電壓穩定在一較高的值上,可使用DC/DC(Direct Current-Direct Current)變換器來實現,同時還可以很大程度上提高電機的驅動性能。

2.2 雙向DC-DC變換器的應用特點

當使用雙向DC-DC變換器來直接驅動電動機旋轉時,因為電動機電流紋波與加在輸入電壓的瞬時值和反電動勢間的電壓差值成正比,則調節逆變器的直流側輸入電壓可通過雙向DC-DC變換器調控電動機的轉速來實現,進而減小其電流紋波。其次,蓄電池組或另加的大容量電容器可以通過雙向DC-DC變換器控制反向制動電流來補充電能,而使電動汽車的接車效率得以提高。

3 系統工作模式分析

雙向DC-DC變換器可使能量雙向流動,需能量雙向流動時能使系統的體重和成本大幅降低,在航空電源系統和電動汽車驅動及蓄電池充放電維護等很多方面都得到了普遍的應用。

3.1 燃料電池動力系統工作模式分析

雙半橋雙向變換器在隔離變壓器的兩側分別是一對稱半橋。兩半橋之間的移相控制變換器中的功率傳輸即可,不需額外的輔助開關或無源諧振裝置,其中所有的開關都可工作在零電壓開通狀態,且開關電壓應力較低。此外電路中不存在大型延時器,變換器動態響應也很快,因此多用作燃料電池的輔助結構。此變換器可使功率雙向流動,與其優勢在于:組件少;較大的負載范圍內實現軟開關不需要輔助器件和諧振電路;能很輕松地進行控制;能輕易分配每一個輸入端的功率。

3.2 雙向DC-DC變換器工作模式分析

要求可通過雙向DC-DC變換器來實現:在蓄電池開始工作給電時,系統中的雙向DC-DC變換器正向升壓,當系統的輸入電壓出入不夠穩定的情況時,可以把輸出主線的電壓處在一個高壓的狀態下,這時系統會立即開啟能量電池,這樣就會使電動機的工作性能得到非常大的提升,非常實用。反之,減速、剎車的時候,系統中的雙向DC-DC變換器反向降壓充電,把電動機制動時產生的附加能量回收給蓄電池組或電容補充消耗的電能。

將蓄電池、燃料電池(主電源裝置)有效地與負載結合起來,這并不是非常簡單的事,需要有一種雙端口雙向DC-DC變換器,蓄電池和逆變器接口電路選用雙端口雙半橋DC-DC變換器。

以汽車行車的各種形態為基礎,采用蓄電池、燃料電池的電動汽車驅動系統有三種不同的狀態模式:

模式1:開啟和加速的時候,負載的功率要求燃料電池和儲能電容等一起供電才可以,單獨靠燃料電池輸出是不行的;模式2:行車速度穩定時,燃料電池在為牽引電機供電的基礎上,還要給蓄電池充電,使其達到最優狀態,以免加速時不能有效的工作,有時還需要回收附加能量;模式3:減速的時候,電池不輸出電能功率,電動機反向工作在發電的形態,蓄電池吸收附加能量進行補充電能。

在模式1中,蓄電池放電,變換器升壓,向高壓側充入能量,使其上升保持在期望值;模式3 時,變換器減壓,回收制動過程中的附加能量來補充電能;模式2里,變換器處在中間狀態。通過設計合理的變換器調控方法,可以實現對附加能量的高效回收和功率的良好分配,調整電能流動方向則以負載狀況的差異為基礎來進行,進而明確變換器進行的狀態。

4 雙半橋雙向DC-DC拓撲結構

4.1 主功率的拓撲結構

雙向DC-DC變換器也有正激式、反激式、推挽式、橋式、電流饋式及其它一些混合式的隔離型變換結構。在DC-DC變換器中,由正反單管等構成的電路多普遍應用在功率不大的地方,半橋變換器多應用于中、大功率中。隔離型的DC-DC變換器當中,正激式的變壓器的磁化情況是單方向的,進而降低了其利用率。

電壓電流應力較小的半橋DC-DC變換器,其功率變壓器的磁化是雙方向的,則就大功率輸出方面實現起來也就容易許多。這類變換器有電壓型和電流型兩種。電壓型DC-DC全橋變換器電路結構簡單、容易控制,類似于Buck型;電感在輸入電源側的電流型則與Boost型相似,適用于功率因數校正的大功率電路。

4.2 控制方案

橋電路用了移相軟開關之后,可實現功率管的ZVS方案,保持開關頻率的穩定持續。但在另一方面,諧振電感會丟掉副邊一定的占空比值,也會造成環流損耗。對于副邊占空比丟失,可用可飽和電感代替諧振電感;也可用降低諧振電感的方式來解決。而對于環流,可用零電壓零電流開關來處理解決,就是用左側負責零電壓開關,右側負責零電流開關,但若想阻斷變壓器圓邊電流的反向通路,需將阻斷二極管、阻斷電容器等串接到變換器主電路中。因為元件并非是理想的,變換器運行過程中其會產生通態損耗,在輸入低電壓大電流時,經濟成本非常大。綜合考慮后,決定方案為零電壓開關結合PWM加移相控制。

參考文獻:

[1]R,瞿文龍,劉圓圓.一種隔離型雙向軟開關DC/DC變換器[J],清華大學學報,2006:46(10):15-19.

第7篇

論文關鍵詞:新能源汽車,發展現狀,發展趨勢,經驗總結

 

一、新能源汽車定義及分類

根據我國《新能源汽車生產企業及產品準入管理規則》,新能源汽車是指采用非常規的車用燃料作為動力來源(或使用常規的車用燃料、采用新型車載動力裝置),綜合車輛的動力控制和驅動方面的先進技術,形成的技術原理先進、具有新技術、新結構的汽車。新能源汽車包括混合動力汽車、純電動汽車(包括太陽能汽車)、燃料電池汽車、氫發動機汽車、其他新能源(如高效儲能器、二甲醚)汽車等各類別產品。

二、國際新能源汽車發展態勢分析

(一)發展環境分析

1.能源危機成為新能源汽車發展的動力。石油資源的日益枯竭和石油價格的巨幅波動,不僅對世界各國經濟造成了重要影響,更引起各國汽車產業的深刻變革:大排量、高油耗的汽車不再受到大多數消費者的青睞,燃油節約型汽車逐漸成為汽車市場的主流。世界各國欲借發展新能源擺脫其對石油的依賴發展趨勢,逐步形成了新的世界經濟增長模式。

2.金融危機提供新能源汽車發展的機遇龍源期刊。全球金融危機的爆發給新能源汽車的產業化發展提供了新的機遇。為了擺脫經濟低谷,拉動經濟復蘇,獲得市場[1]競爭先機,并使自己在未來的產業競爭格局中占據有利位置,發展新能源汽車成為世界各大汽車企業共同的戰略選擇。

3.環境污染呼喚新能源汽車時代的到來。隨著汽車產業的快速發展,汽車已經成為城市的污染源之一。汽車尾氣主要成分是CO、HC、NOX和顆粒物等,在城市中心,交通排放的CO形成的污染物濃度占CO總濃度的90%~95%,HC和NOX占80%~90%,而這些排放物正是造成地球氣候變暖的重要原因之一。

4.技術變革促進新能源汽車的研發和生產。除了常規的化石能源(煤、石油)以外,新能源與可再生能源(太陽能、風能、水能、生物能等)的開發和利用比例逐漸提高,并由此產生了相應的多種新技術。能源的多樣化發展給汽車新技術的應用帶來了無限可能,各類新能源汽車的研發和生產必然會將汽車產業領域延伸、拓展到更加廣泛的產業范疇。

(二)發展特點分析

新能源汽車在全球剛剛起步,代表著汽車產業未來的發展方向。混合動力作為新型汽車能源動力技術共性平臺發展趨勢,繼承了先進內燃機技術,結合了高效潔凈的電力驅動方式,既充分利用現有燃料基礎設施,又能包容各種代用燃料,已成為新型動力系統汽車產業化的典型代表,開始大規模產業化發展,其中插電式混合動力汽車越來越受到重視;純電動汽車借助各種高新技術特別是新型動力電池技術的進步找到了新的發展機遇,開始進入市場,并有快速增長的趨勢;燃料電池作為一種新興能量轉換裝置,盡管目前還存在很多需要克服的技術障礙,但其作為新一代汽車能源動力系統的遠期解決方案仍然被看好,各種資助和示范驗證正在進行,真正進入市場將還有一個較長的時期;代用燃料汽車可以用天然氣、液化石油氣、生物柴油、合成燃料、醇類燃料、醚類等多種清潔替代能源,成為解決石油資源短缺的重要途徑。

(三)發展戰略比較

美國長期側重降低石油依賴、確保能源安全的戰略發展趨勢,將發展新能源汽車作為交通領域實現根本上擺脫石油依賴的重要措施,并以法律法規的形式確定其戰略定位。美國從20世紀80年代起在不同的階段提出了不同的車用能源發展戰略,克林頓時期以提高燃油經濟性為目標,混合動力是其主要的技術解決方案;布什時期追求零排放和對石油的零依賴,氫燃料電池汽車是其主要的技術解決方案,后期還計劃用10年時間實現20%的石油替代和節約,主要措施是使用生物質燃料;近期奧巴馬大力發展電動汽車,實施了總額48億美金的動力電池以及電動汽車的研發和產業化計劃,其中40億美金用于動力電池的研發。

日本長期堅持確保能源安全、提高產業競爭力的雙重戰略,通過制訂國家目標引導新能源汽車產業的發展,同時高度重視技術創新龍源期刊。日本在2006年“新國家能源戰略”中明確提出,通過改善和提高汽車燃油經濟性標準、推進生物質燃料應用、促進電動汽車應用等途徑,到2030年交通領域對石油的依賴能夠降低20%。重視生物燃料和燃料電池等技術開發,擬在2011年單年度生產生物燃料5萬千升發展趨勢,計劃在五年內斥資2090億日元開發以天然氣為原料的液體合成燃料技術、車用電池,以及氫燃料電池科技。近期又將大力發展電動汽車作為低碳革命的重要內容,計劃到2020年以電動汽車為主體的下一代汽車能夠達到1350萬輛。日本的混合動力汽車已形成產業化,豐田、本田、日產等日本廠商的混合動力汽車不僅在國內熱銷,在國際市場上也令其他國家廠商望其項背。

歐洲更加側重于溫室氣體減排戰略,將滿足日益嚴格的二氧化碳排放限制要求作為發展新能源汽車的主要驅動力。歐洲新能源汽車發展的主要目標在早期以生物質燃料和天然氣為主,在本世紀初期提出到2020年實現23%的石油替代,主要是生物質燃料、CNG以及氫燃料,但近期對于電動汽車給予高度關注。歐洲在發展電動汽車方面起步較晚,但是國家規劃非常細致、系統,從基礎研發做起,分階段從研發產業化、基礎設施方面給予統籌布局。2009年下半年德國的電動汽車計劃以純電動汽車為重點,分別提出了2015年、2020年的產業化和市場化的發展目標。

(四)產業政策分析

上世紀90年代以來,美日歐等國先后出臺了一系列法律、規劃、政策文件發展趨勢,加強了對形成本國電動汽車產業的有效支持,主要體現在以下幾方面:高度重視產業初創期的政策扶持;主要采用稅收和補貼等政策支持措施;稅收、補貼政策往往與油耗控制政策及尾氣排放控制政策相結合;注重加強對降低整車重量的政策引導。2008年國際金融危機爆發以來,世界各國加強了對本國汽車產業的扶持力度,尤其是針對培育形成本國的新能源汽車產業出臺了一系列扶持政策,關注點重在兩個方面:大力支持先進電池等技術的研發和鼓勵購買電動汽車。

2009年1月,韓國頒布“新增長動力規劃及發展戰略”,將綠色技術、尖端產業融合、高附加值服務等三大領域共17項新興產業確定為新增長動力,在綠色運輸系統方面,提出重點開發油電混合動力汽車等自主核心技術,實現關鍵零部件和材料國產化,2013年進入綠色汽車世界4強。2009年9月,美國“美國創新戰略:推動可持續增長和高質量就業”,提出撥款20億美元,支持汽車電池技術等的研發和配件產業的發展發展趨勢,盡快生產出全球最輕便、最廉價和最大功效的汽車電池,使美國電動汽車、生物燃料和先進燃燒技術等站在世界前沿。

2009年4月1日,日本開始實施“綠色稅制”,免除消費者在購買純電動汽車、混合動力汽車、清潔柴油汽車時的多項稅收,還提出在2009年11月后的一年時間里再提供2300億日元左右的資金用于支持節能環保車型的補貼龍源期刊。2009年7月1日,美國政府提出了總額10億美元的“汽車折價退款機制”——以舊換新補貼政策,計劃為期一年;“美國創新戰略:推動可持續增長和高質量就業”提出,為鼓勵消費者購買電動汽車,美國政府將提供總額高達7500億美元的稅收抵免。英國政府在2010年度預算案中提出“綠色復蘇”計劃,其核心是挑選2~3個城市作為僅適用電動汽車的純綠色城市,重點推動普及電動汽車;在全國范圍內建立一個充電網絡,保證電動汽車能在路邊充電站及時充電;對放棄污染較高舊車、購買清潔能源車的消費者,提供每車2000英鎊的補貼。

(五)發展趨勢分析

在車用動力電池領域,混合動力和純電動車用動力電池負責儲存并為電動機提供電能發展趨勢,其性能、成本和安全性很大程度上決定著混合動力汽車和純電動汽車的發展進程。從當前的技術水平以及發展趨勢來看,鎳氫電池是目前應用最為廣泛的車用動力電池,由于其技術成熟度和成本上的優勢,在短期內仍將是混合動力汽車的首選動力。鋰離子電池具有無記憶性、低自放電率、高比能量、高比功率、環保等諸多優點,應用前景較好,一旦成本問題得到解決,將成為純電動汽車和插電式混合動力汽車的主要動力選擇。

在車用驅動電機領域,永磁無刷電動機結構靈活、設計自由度大、性能較好,適合成為電動汽車高效、高密度、寬調速牽引驅動,已經在混合動力轎車上進行較多應用,但是受永磁材料工藝影響和限制較大,而且控制系統復雜,造價很高;開關磁阻電動機調速系統兼具直流、交流兩類調速系統的優點,結構簡單、維護修理容易、可靠性好、轉速和效率高、調速范圍寬、控制靈活發展趨勢,如果其技術瓶頸(轉矩波動大、噪聲大、需要位置檢測器、結構復雜性較大等)得到突破,將更適合電動汽車動力性能要求,被視為最具潛力的電動車電氣驅動系統。

電子控制技術在新能源汽車中發揮著極其重要的作用,應用在汽車的各個領域,包括動力牽引系統控制、車輛行駛姿態控制、車身控制和信息傳送。隨著集成控制技術、計算機技術和網絡技術的發展,汽車電子控制技術已明顯向集成化、智能化和網絡化三個主要方向發展。

三、國際新能源汽車發展經驗總結

從國際經驗看,各國政府都制定和實施了系統的激勵性政策,在發展規劃、關鍵技術研發投入、消費政策、環境標準、道路交通管理等方面,都為新能源汽車產業的發展提供了寬松的環境。

1.發展規劃制定。美國、日本、韓國、歐盟等根據產業發展所處階段的實際需要,制定分階段、分類別發展規劃,動態調整新能源汽車產業發展的扶持政策,使電動汽車產業順利實現由政府推動過渡到市場推動。

2.基礎研究資助。美國、日本、歐盟等地政府組織科研大攻關,協調全境范圍內甚至全球范圍內的政府機構、科研單位、汽車和燃料廠商,對未來新能源汽車技術進行大規模的基礎研究發展趨勢,并對新能源汽車的示范運行直接補貼龍源期刊。

3.財稅政策激勵。各國政府通過財稅政策降低消費環節新能源汽車的購車成本和使用成本,從經濟上激勵消費者購買、使用新能源汽車,主要措施包括:購置稅減免、返還以及直接補貼,許多歐盟國家基于燃油效率和環保性能制定車輛稅費,針對消費者購置新型、清潔和高能效汽車給予稅收減免;征收燃油稅,歐盟實施高稅率燃油稅激勵消費者選用節能環保的先進柴油車。

4.技術法規限制。美國、日本、歐盟等普遍采用強制性技術法規限制燃油消耗和尾氣排放,并逐步提高技術標準,促使汽車生產商加大研發投入,生產新能源汽車。各國和地區的法規主要有:美國的CAFE標準和Tier標準、日本燃料經濟性標準和尾氣排放標準、歐洲自愿協議和歐盟尾氣排放標準。

5.交通管理獎罰。為鼓勵新能源汽車的發展,美國、日本、歐盟等地在交通管理措施中也有所體現,給予新能源汽車交通優先和停車免費等獎勵,對高油耗、污染大的汽車采用懲罰性的措施。

參考文獻

[1]陳柳欽.新能源汽車國際路線觀察[J].決策,2010,(10).

[2]程廣宇.國外新能源汽車產業政策分析及啟示[J].中國科技投資,2010,(5).

[3]張進華.節能與新能源汽車發展戰略的國際比較[J].環境保護,2010,(18).

第8篇

[論文摘要]:通信電源是向通信設備提供交直流電的電能源,是整個通信電信網的能量保證。通信電源系統由交流供電系統、直流供電系統和相應的保護系統構成。通信電源系統的設備多,分布廣,不僅單個電源設備的可靠性會影響系統的可靠性,電源系統的總體結構也會對自身的可靠性造成很大的影響。

一、通信電源的發展現狀

(一)供電系統的現狀

通信電源是通信系統必不可少的重要組成部分,其設計目標是安全、可靠、高效、穩定、不間斷地向通信設備提供能源。通信電源必須具備智能監控、無人值守和電池自動管理等功能,從而滿足網絡時代的需求。通信電源系統由交流配電、整流柜、直流配電和監控模塊組成。

(二)通信電源設備的更新換代

近年來,隨著技術的進步,特別是功率器的更新換代,新型電磁材料的不斷使用,功率變換技術的不斷改進,控制方法的不斷進步,以及相關學科的技術不斷融合,通信電源在系統的可靠性、穩定性,電磁兼容性,消除網側電流諧波、提高電能利用率、降低損耗、提高系統的動態性能等等方面都取得長足的進步。

(三)現行通信電源的電路模型和控制技術

目前通信電源的變換電路拓撲結構主要采用雙單端電路,半橋電路和全橋電路,各有優缺點。一般認為,在中、小功率場合,采用雙單端電路或半橋電路是適宜的;在大功率場合則采用全橋變換電路。

二、通信電源發展趨勢

(一)開關器件的發展趨勢

電源技術的精髓是電能變換,即利用電能變化技術將市電或電池等一次電源變換成適用于各種用電對象的二次電源。其中,開關電源在電源技術中占有重要地位,從10kHz發展到高穩定度、大容量、小體積、開關頻率達到兆赫茲級,開關電源的發展為高頻變化提供了硬件基礎,促進了現代電源技術的繁榮和發展。

(二)通信直流電源產品的技術發展市場需求發展

在需求與技術的共同推動下,通信直流電源產品體現了如下的發展態勢:

體系架構相當長的一段時間內維持穩定。通信直流電源在相當長的時間內還是維持現有的交流配電、整流器模塊(并聯)、直流配電、監控單元、蓄電池等為主要組成部分的架構;功率變換模式也將維持現有的高頻開關模式,暫時不會出現類似從線性電源到開關電源的階躍性的變化。

功率密度不斷提高。通信一次電源的核心部件整流器的功率密度不斷提高,推動了通信直流電源整機的功率密度不斷提高,但配電器件、蓄電池等密度基本維持穩定,一定程度制約了整機系統的功率密度的提高比率。

更高的可靠性。高可靠性是通信電源的最基本要求。隨著器件技術、通信電源技術的成熟,以及各通信直流電源設備廠家在可靠性研究上大力投入,通信直流電源產品可靠性呈不斷提高的趨勢。

按照TRIZ理論(“創造性解決問題的理論”的俄語縮略語)描述的技術系統發展進化規律,一般而言,技術的生命周期包含四個階段:嬰兒期、成長期、成熟期和衰退期,種種跡象表明,通信直流電源的核心技術,開關電源技術基本上開始步入成熟期:效率的提升變得緩慢和困難、而電源損耗不能大幅度降低限制了功率密度的進一步提高,未來幾年甚至十幾年內,通信直流電源產品將進入一個緩慢發展的階段,直至有一天,一種新的電源變換技術出現,通信直流電源產品就會再出現一個階躍性的發展,就像開關穩壓技術替代線性穩壓技術,給電源帶來了革命性的變化。

(三)通信用蓄電池技術研究的新進展

通信用蓄電池作為通信系統后備的能源供應手段,其研制、生產和應用技術一直備受世界各國通信行業的重視。隨著科技的發展和技術的不斷進步,國外正在研制和試驗新一代的通信用蓄電池,有的已經進入商用化階段。這些新的蓄電池,由于其材料、結構和技術上的先進性,在性能上具有傳統的VRLA電池無可比擬的優越性。

1.釩電池(VanadiumRedoxBattery)。釩電池(VRB)是一種電解值可以流動的電池,目前正在逐步進入商用化階段。

2.燃料電池。燃料電池是一種化學電池,也是一種新型的發電裝置,它所需的化學原料由外部供給,如氫氧燃料電池,只要外部供給氫和氧,經過內部電極、催化劑和堿性電解液的作用,就能產生0.9V電壓的直流電能,同時產生大量的熱能.

3.電源監控系統的發展。隨著互聯網技術應用日益普及和信息處理技術的不斷發展,通信系統從以前的單機或小局域系統逐漸發展至大局域網系統或廣域網系統,大量人力、物力被投入到網絡設備的管理和維護工作上。不過通信設施所處環境越來越復雜,人煙稀少、交通不便都會增大維護的難度,這對電源設備的監控管理提出了新的需求,保護通信互聯網終端的電源設備必須具備數據處理和網絡通信能力。此時,數字化技術就表現出了傳統模擬技術無法實現的優勢,數字化技術的發展逐步表現出傳統模擬技術無法實現的優勢.

4.通信電源的環保要求。環保問題,一方面的指標是通信電源的電流諧波要符合要求,降低電源的輸入諧波,不但可以改善電源對電網的負載特性,減少給電網帶來嚴重污染的情況,還可減少對其他網絡設備的諧波干擾。另一個重要方面,是材料的可循環利用和環境的無污染,這方面需要產品滿足WEEE/ROHS指令。

在通信電源開發、生產早期,人們主要集中研究電源的輸出特性,較少考慮到電源的輸入特性。例如:傳統的在線式電源輸入AC/DC部分通常采用橋式整流濾波電路,其輸入電流呈脈沖狀,導通角約為π/3,波峰因數大于純電阻負載的1.4倍。這些諧波電流大的電源給電網帶來了嚴重的污染,使電網波形失真,實際負荷能力降低,對于三相四線制的電網來說,還很有可能因中性線電流過大而出現不安全隱患。

參考文獻:

[1]朱雄世,《通信電源的現狀與展望》.

[2]《淺析全球通信電源技術發展趨勢》.

[3]《通信直流電源發展趨勢》.

[4]孫向陽、張樹治,《國外通信用蓄電池技術研究的新進展》.

[5]《通信電源技術發展趨勢及標準研究方向》.

[6]曾瑛,《淺談通信電源》.

[7]王改娥、李克民,《談我國通信電源的發展方向》.

[8]王改娥、李克民,《我國通信電源的發展回顧與展望》.

[9]侯福平,《UPS系統在通信網絡中使用的特點及要求》.

[10]《全球通信電源技術發展呈現五大趨勢》.

第9篇

    [論文摘要]:通信電源是向通信設備提供交直流電的電能源,是整個通信電信網的能量保證。通信電源系統由交流供電系統、直流供電系統和相應的保護系統構成。通信電源系統的設備多,分布廣,不僅單個電源設備的可靠性會影響系統的可靠性,電源系統的總體結構也會對自身的可靠性造成很大的影響。

    一、通信電源的發展現狀

    (一)供電系統的現狀

    通信電源是通信系統必不可少的重要組成部分,其設計目標是安全、可靠、高效、穩定、不間斷地向通信設備提供能源。通信電源必須具備智能監控、無人值守和電池自動管理等功能,從而滿足網絡時代的需求。通信電源系統由交流配電、整流柜、直流配電和監控模塊組成。

    (二)通信電源設備的更新換代

    近年來,隨著技術的進步,特別是功率器的更新換代,新型電磁材料的不斷使用,功率變換技術的不斷改進,控制方法的不斷進步,以及相關學科的技術不斷融合,通信電源在系統的可靠性、穩定性,電磁兼容性,消除網側電流諧波、提高電能利用率、降低損耗、提高系統的動態性能等等方面都取得長足的進步。

    (三)現行通信電源的電路模型和控制技術

    目前通信電源的變換電路拓撲結構主要采用雙單端電路,半橋電路和全橋電路,各有優缺點。一般認為,在中、小功率場合,采用雙單端電路或半橋電路是適宜的;在大功率場合則采用全橋變換電路。

    二、通信電源發展趨勢

    (一)開關器件的發展趨勢

    電源技術的精髓是電能變換,即利用電能變化技術將市電或電池等一次電源變換成適用于各種用電對象的二次電源。其中,開關電源在電源技術中占有重要地位,從10kHz發展到高穩定度、大容量、小體積、開關頻率達到兆赫茲級,開關電源的發展為高頻變化提供了硬件基礎,促進了現代電源技術的繁榮和發展。

    (二)通信直流電源產品的技術發展市場需求發展

    在需求與技術的共同推動下,通信直流電源產品體現了如下的發展態勢:

    體系架構相當長的一段時間內維持穩定。通信直流電源在相當長的時間內還是維持現有的交流配電、整流器模塊(并聯)、直流配電、監控單元、蓄電池等為主要組成部分的架構;功率變換模式也將維持現有的高頻開關模式,暫時不會出現類似從線性電源到開關電源的階躍性的變化。

    功率密度不斷提高。通信一次電源的核心部件整流器的功率密度不斷提高,推動了通信直流電源整機的功率密度不斷提高,但配電器件、蓄電池等密度基本維持穩定,一定程度制約了整機系統的功率密度的提高比率。

    更高的可靠性。高可靠性是通信電源的最基本要求。隨著器件技術、通信電源技術的成熟,以及各通信直流電源設備廠家在可靠性研究上大力投入,通信直流電源產品可靠性呈不斷提高的趨勢。

    按照TRIZ理論(“創造性解決問題的理論”的俄語縮略語)描述的技術系統發展進化規律,一般而言,技術的生命周期包含四個階段:嬰兒期、成長期、成熟期和衰退期,種種跡象表明,通信直流電源的核心技術,開關電源技術基本上開始步入成熟期:效率的提升變得緩慢和困難、而電源損耗不能大幅度降低限制了功率密度的進一步提高,未來幾年甚至十幾年內,通信直流電源產品將進入一個緩慢發展的階段,直至有一天,一種新的電源變換技術出現,通信直流電源產品就會再出現一個階躍性的發展,就像開關穩壓技術替代線性穩壓技術,給電源帶來了革命性的變化。

    (三)通信用蓄電池技術研究的新進展

    通信用蓄電池作為通信系統后備的能源供應手段,其研制、生產和應用技術一直備受世界各國通信行業的重視。隨著科技的發展和技術的不斷進步,國外正在研制和試驗新一代的通信用蓄電池,有的已經進入商用化階段。這些新的蓄電池,由于其材料、結構和技術上的先進性,在性能上具有傳統的VRLA電池無可比擬的優越性。

    1.釩電池(Vanadium Redox Battery)。釩電池(VRB)是一種電解值可以流動的電池,目前正在逐步進入商用化階段。

    2.燃料電池。燃料電池是一種化學電池,也是一種新型的發電裝置,它所需的化學原料由外部供給,如氫氧燃料電池,只要外部供給氫和氧,經過內部電極、催化劑和堿性電解液的作用,就能產生0.9V電壓的直流電能,同時產生大量的熱能.

    3.電源監控系統的發展。隨著互聯網技術應用日益普及和信息處理技術的不斷發展,通信系統從以前的單機或小局域系統逐漸發展至大局域網系統或廣域網系統,大量人力、物力被投入到網絡設備的管理和維護工作上。不過通信設施所處環境越來越復雜,人煙稀少、交通不便都會增大維護的難度,這對電源設備的監控管理提出了新的需求,保護通信互聯網終端的電源設備必須具備數據處理和網絡通信能力。此時,數字化技術就表現出了傳統模擬技術無法實現的優勢,數字化技術的發展逐步表現出傳統模擬技術無法實現的優勢.

    4.通信電源的環保要求。環保問題,一方面的指標是通信電源的電流諧波要符合要求,降低電源的輸入諧波,不但可以改善電源對電網的負載特性,減少給電網帶來嚴重污染的情況,還可減少對其他網絡設備的諧波干擾。另一個重要方面,是材料的可循環利用和環境的無污染,這方面需要產品滿足WEEE/ROHS指令。

    在通信電源開發、生產早期,人們主要集中研究電源的輸出特性,較少考慮到電源的輸入特性。例如:傳統的在線式電源輸入AC/DC部分通常采用橋式整流濾波電路,其輸入電流呈脈沖狀,導通角約為π/3,波峰因數大于純電阻負載的1.4倍。這些諧波電流大的電源給電網帶來了嚴重的污染,使電網波形失真,實際負荷能力降低,對于三相四線制的電網來說,還很有可能因中性線電流過大而出現不安全隱患。

    參考文獻:

    [1]朱雄世,《通信電源的現狀與展望》.

    [2]《淺析全球通信電源技術發展趨勢》.

    [3]《通信直流電源發展趨勢》.

    [4]孫向陽、張樹治,《國外通信用蓄電池技術研究的新進展》.

    [5]《通信電源技術發展趨勢及標準研究方向》.

    [6]曾瑛,《淺談通信電源》.

    [7]王改娥、李克民,《談我國通信電源的發展方向》.

    [8]王改娥、李克民,《我國通信電源的發展回顧與展望》.

    [9]侯福平,《UPS系統在通信網絡中使用的特點及要求》.

    [10]《全球通信電源技術發展呈現五大趨勢》.

相關文章
相關期刊
主站蜘蛛池模板: 永久在线免费 | 阿v天堂久久 | 免费高清国产 | 色婷五月 | 激情免费网站 | 国产成人一区免费观看 | 国产在线视频网址 | 国产男女猛视频在线观看网站 | 国产精品永久免费自在线观看 | 亚洲国产精品成人综合色在线婷婷 | 黄色成人免费观看 | 欧美日韩视频在线观看高清免费网站 | 欧美在线视频一区在线观看 | 久久五月网 | 欧洲精品一区二区三区 | 奇米777四色影视在线看 | 国产一区二区三区欧美精品 | 国产精品毛片无码 | 久久久国产成人精品 | 激情亚州| 日产国语一区二区三区在线看 | 四虎影永久在线观看网址 | 日本精品久久久久久久 | 日韩综合网 | 狠狠干婷婷 | 精品视频在线免费 | 99成人综合久久精品亚洲直播秀 | 日本免费高清视频 | 欧美婷婷六月丁香综合色 | 24小时最新更新免费观看片 | 日本不卡一区二区三区四区 | 2018亚洲男人天堂 | 国产日韩欧美在线视频免费观看 | 色网站在线视频 | 国产国产成人精品久久 | 成人黄性视频 | 中文字幕久久久久 | 欧美1区 | kuai97| 久久精品成人 | 国产成人小视频 |